Становление электромагнитной картины мира кратко. Разработка электромагнитной картины мира. на тему: «Электромагнитная картина мира»

Уже в XIX в. физики дополнили механистическую картину мира электромагнитной. Электрические и магнитные явления были известны давно, но изучались они обособленно друг от друга. Дальнейшее их исследование показало, что между ними существует глубокая взаимосвязь, что заставило ученых создать единую электромагнитную теорию. Действительно, датский ученый X. Эрстед (1777-1851), поместив над проводником, по которому идет электрический ток, магнитную стрелку, обнаружил, что она отклоняется от первоначального положения. Это привело ученого к мысли, что электрический ток создает магнитное поле. Позднее английский физик М. Фарадей (1791-1867), вращая замкнутый контур в магнитном поле, открыл, что в нем возникает электрический ток. На основе опытов Эрстеда, Фарадея и других ученых английский физик Дж. Максвелл (1831-1879) создал свою электромагнитную теорию, т.е. теорию о существовании единого электромагнитного поля. Таким путем было показано, что в мире существует не только вещество в виде тел, но и физические поля.

После того как объектом изучения физиков наряду с веществом стали разнообразные поля, картина мира приобрела более сложный характер. Тем не менее в первое время ученые пытались объяснить электромагнитные процессы, в том числе и световые явления, с помощью механических моделей, основанных на понятиях и принципах механистической картины мира. В этом можно убедиться, обратившись к краткой истории появления первых гипотез о природе электричества и магнетизма.

4.1. Гипотезы о невесомых электрических и магнитных жидкостях

Рудименты старых представлений об электричестве до сих пор сохранились в научном языке. Мы постоянно слышим, как физики говорят, что электрический ток течет по проводнику от высокого потенциала к


низшему, как будто электричество подобно жидкости. В самом начале исследований электрические и магнитные явления на самом деле рассматривались как невесомые, положительно и отрицательно заряженные жидкости, поскольку с помощью таких гипотез можно было объяснить известные к тому времени эксперименты. Такие опыты проводят обычно при изучении курса физики в средней школе.

Если натереть эбонитовую палочку кусочком шерстяной ткани и поднести потом к металлической головке электроскопа, то его листочки расходятся. Отсюда делается вывод, что в результате трения эбонитовая палочка зарядилась отрицательно и этот заряд передала электроскопу. Листочки электроскопа, заряженные одноименным электричеством, отталкиваются друг от друга и поэтому расходятся. Аналогично этому, если натереть стеклянную палочку кошачьим мехом, она зарядится положительно. При прикосновении к электроскопу листочки, заряженные положительным одноименным электричеством, также разойдутся.

Гипотеза о существовании невесомых электрических жидкостей основывается на следующих предположениях:

1. Электричество представляет собой определенную субстанцию, подобную веществу, а именно жидкость.

2. В каждом незаряженном теле находится одинаковое количество положительного и отрицательного электричества, и поэтому они взаимно нейтрализуют друг друга. При этом какое электричество называть положительным или отрицательным - вопрос чисто условный.

3. В результате определенных действий, например трения, один вид электричества можно отделить от другого.

4. Имеется два вида тел, в одних из них электрические жидкости могут двигаться свободно, и поэтому они называются проводниками электричества. В других - не могут двигаться, и поэтому они называются изоляторами. К проводникам относят металлы, землю, человеческое тело. К изоляторам - фарфор, стекло, резину и т.п.

Все эти предположения, хотя и объясняют простейшие опыты с электрическими явлениями, связаны с попытками распространения механистической концепции о невесомых жидкостях на явления, принципиально отличные от механических явлений. Поскольку течение жидкости происходит при разных ее уровнях, постольку пришлось и для электричества ввести понятия разности потенциалов. Возникает, однако, вопрос: отличается ли вес заряженного тела от электрически нейтрального тела?

Опыт показывает, что их вес является одинаковым. Чтобы согласовать этот факт с допущением о существовании электрических жидкостей, пришлось объявить их невесомыми субстанциями, а тем самым отойти от механистической концепции.


Невесомые субстанции раньше в большом числе придумывались для объяснения целого ряда новых явлений немеханической природы. Так, например, теплоту рассматривали тоже как невесомую субстанцию, подобную жидкости, которая течет от горячего тела к холодному, если привести их в соприкосновение. В результате их температура станет одинаковой. Однако совсем иначе происходит с электричеством, ибо при взаимодействии разноименно заряженные тела становятся электрически нейтральными.

При дальнейшем развертывании исследований явлений электричества попытки их объяснения с помощью механистических представлений наталкивались на более серьезные трудности. Еще в конце XVIII в. итальянский ученый А. Вольта (1745-1827) построил прибор, который теперь известен как вольтов столб, состоящий из нескольких элементов. Каждый такой элемент представляет собой батарею, в которой в сосуд, где налита вода и немного серной кислоты, опущены медная и цинковая пластинки. Если соединить эти пластинки проволокой, то в цепи возникнет электрический ток. Между медной и цинковой пластинками, согласно гипотезе об электрической жидкости, должна возникнуть разность потенциалов, которая в случае двух заряженных тел, соединенных проволокой, быстро исчезает, а в батарее продолжает сохраняться. Это заставило Вольту предположить, что пластинки «поставляют неограниченный заряд или производят непрерывное действие, или импульс электрической жидкости». Обратите внимание, Вольта еще рассматривает электричество как жидкость. Он не раскрывает и не анализирует причину возникновения разности потенциалов на пластинках в результате возникновения химических процессов в растворе, а тем самым не рассматривает его как процесс превращения химической энергии в электрическую.

В конце XIX в. место гипотетических электрических и магнитных жидкостей заняла новая концепция единого электромагнитного поля. Если в механике изменения и движение материальных частиц совершаются с помощью внешних сил, приложенных к частицам или образованному из них телу, то в электродинамике изменения совершаются под воздействием сил поля.

4.2. Электромагнитное поле и его особенности

Первоначально в исследованиях М. Фарадея понятие электромагнитного поля играло вспомогательную роль и служило в качестве наглядной иллюстрации для демонстрации сил поля. Однако впоследствии оно стало таким же фундаментальным понятием, как и понятие веще-


ства. В его основе, как мы отметили, лежат два важнейших открытия, связавшие в одно целое электрические и магнитные явления. Как мы уже знаем, Эрстед установил, что вокруг проводника, по которому течет электрический ток, возникает магнитное поле. В последующих исследованиях физиков было установлено, что новая сила, возникающая под воздействием тока, зависит от скорости движения электрического заряда и направлена перпендикулярно к плоскости этого движения.

В дальнейшем Фарадей открыл совершенно противоположное явление электромагнитной индукции, которое свидетельствовало о том, что изменяющееся магнитное поле создает электрическое поле и, следовательно, вызывает электрический ток.

Таким образом, электрическое и магнитное поля являются не изолированными объектами, а образуют взаимосвязанное, единое электромагнитное поле. Там, где существует электрическое поле, обязательно возникает и магнитное поле, а магнитное поле создает электрическое поле.

Однако этот важнейший вывод относится только к изменяющимся полям. Действительно электрический заряд, движущийся по проводнику, или ток, представляет собой изменяющееся, переменное поле. Именно оно создает магнитное поле вокруг проводника. Если не будет движения электрических зарядов, тогда не возникнет и магнитное поле. Например, вокруг неподвижного, заряженного электричеством шара существует статическое электрическое поле, но поскольку шар остается неподвижным, то никакого магнитного поля вокруг него не образуется. Стоит только привести шар в движение, как вокруг него возникнет магнитное поле. Аналогично этому неподвижный магнит, вокруг которого существует статическое магнитное поле, не создает в замкнутом проводнике, находящемся поблизости, электрического поля, а тем самым и электрического тока. Следовательно, статические, не изменяющиеся в пространстве и со временем электрические и магнитные поля не создают единого электромагнитного поля. Только когда мы имеем дело с движущимися электрическими и магнитными зарядами, т.е. с переменными полями, между ними возникает взаимодействие и появляется единое электромагнитное поле.

Установление глубокой внутренней связи и единства между ранее изолированными электрическими и магнитными явлениями, которые прежде рассматривались как особого рода невесомые жидкости, было выдающимся достижением в физике. Возникшее на этой основе понятие электромагнитного поля покончило с многочисленными попытками механической интерпретации электромагнитных явлений. Даже истолкование силовых линий как механических натяже-


ний поля, которыми пользовался еще Фарадей, потеряло смысл после того, как великим английским физиком Дж. Максвеллом была построена математическая теория электромагнитного поля.

Эта теория представляет собой обобщение всех эмпирических зависимостей, установленных Эрстедом, Фарадеем и другими учеными при исследовании электрических и магнитных явлений. Но это обобщение отнюдь не сводится к суммированию их результатов, а предполагает идеализацию изучаемых процессов. Максвелл в своем воображении представил идеальный случай опыта Фарадея, когда замкнутая кривая, которую пересекают магнитные линии, стягивается в некоторую точку пространства. В этом предельном случае величина и форма замкнутой кривой не играют никакой существенной роли, и поэтому становится возможным рассматривать законы, связывающие изменения магнитного и электрического поля, в любой точке пространства и в любой момент времени. Такой же воображаемый случай можно проделать с опытом Эрстеда и рассматривать законы, связывающие изменения электрического и магнитного поля, в любой момент времени и в любой точке пространства.

Между законами электромагнитного поля, выраженными в уравнениях Максвелла, и законами механики Ньютона существует определенная связь. При изучении механических законов мы выяснили, что, зная координаты тела, его скорость и уравнение движения, можно точно определить его положение и скорость в любой точке пространства в каждый момент времени в будущем или прошлом. Для этого, как известно, используются обыкновенные дифференциальные уравнения.

Уравнения Максвелла дают возможность, зная состояние поля в какой-либо момент времени, определить, как оно будет изменяться с течением времени. Но между законами механики и электромагнетизма имеется и существенное отличие. Если при заданном состоянии движения материальной точки законы механики позволяют определить его траекторию и положение в любой произвольный момент времени в любом месте, то законы Максвелла дают возможность определить состояние электромагнитного поля в непосредственной близости с предыдущим его состоянием. Условно говоря, в механике при определении состояния движения системы опираются на представление о дальнодействии. Согласно принципу дальнодействия, автором которого был французский ученый и философ Р. Декарт, силовое воздействие можно передать мгновенно на любое расстояние через пустое пространство. В теории электромагнитного поля такая возможность отрицается, и поэтому она опирается на принцип близкодействия. Это позволяет шаг за шагом проследить изменение электромагнитного поля с течением времени.


При изучении движения материальных частиц или систем, образованных из них, историю изменения их состояний можно изучать по их траекториям. В электромагнитной теории приходится обращаться уже к изменениям, происходящим с полем в пространстве. Поэтому для математического описания электромагнитного поля обращаются к дифференциальным уравнениям с частными производными. Если в механике изменение и движение всегда рассматривается с учетом взаимодействия самих тел, являющихся источником движения, т.е. внешней силой, вызывающей это движение, то в теории электромагнитного поля абстрагируются от подобных источников и рассматривают лишь изменение поля в пространстве с течением времени в целом. Более того, источник, создающий поле, со временем может перестать действовать, хотя порожденное им поле продолжает существовать.

Наконец, из уравнений Максвелла вытекает следствие о существовании электромагнитных волн и скорости их распространения. Действительно, колеблющийся электрический заряд создает изменяющееся электрическое поле, которое сопровождается изменяющимся магнитным полем. Если поблизости от него находится замкнутый проводник, то в нем возникает электрический ток, который создает магнитное поле и т.д. В результате колебаний электрических зарядов в окружающее пространство излучается определенная энергия в виде электромагнитных волн, которые распространяются с определенной скоростью. Поскольку направление распространения энергии перпендикулярно направлению силовых линий поля, постольку электромагнитные волны являются поперечными.

Экспериментальными исследованиями было установлено, что скорость распространения электромагнитных волн равна 300 000 км/с. Поскольку с такой же скоростью распространяется свет, постольку было логично предположить, что между электромагнитными и световыми явлениями существует определенная общность.

4.3. Связь электромагнетизма и оптики

Установление равенства между скоростью света и скоростью распространения электромагнитных волн явилось новым крупным шагом в выявлении единства между внешне различными явлениями природы.

По вопросу о природе света до открытия электромагнитной теории Максвелла существовали две конкурирующие гипотезы: корпускулярная и волновая.


Сторонники корпускулярной гипотезы, начиная с Ньютона, рассматривали свет как поток световых корпускул, или дискретных частиц. Такая гипотеза хорошо согласовывалась с принципами механистического мировоззрения, сторонники которого достаточно убедительно объяснили прямолинейное распространение света, его рефракцию, или преломление при переходе из одной среды в другую, и даже дисперсию, или разложение белого света на составляющие его цвета, и др. Однако корпускулярная гипотеза оказалась не в состоянии объяснить более сложные явления, такие, как интерференция и дифракция света.

Под интерференцией волн понимают наложение когерентных световых волн. Когда при этом совпадают гребни волн, тогда их амплитуды складываются и свет усиливается. Если же гребень одной волны совпадает с впадиной другой, тогда амплитуда одной волны вычитается из другой и вместо света в этом месте появится ослабление света или даже темнота. Этот опыт в самом начале XIX в. произвел английский врач Т. Юнг. Если пропустить через два близко расположенных булавочных отверстия световые лучи, то за темным экраном можно наблюдать чередование светлых и темных колец. Светлые кольца появляются в тех местах, где совпадают гребни волн, темные - в местах совмещения гребней и впадин волн. Таким образом, под интерференцией понимают усиление или ослабление света при наложении световых волн. Ясно, что с помощью корпускулярных представлений о свете явление интерференции объяснить не удается.

То же самое следует сказать о другом явлении, которое называют дифракцией, возникающей при отклонении света от прямолинейного направления. Такое явление наблюдается при прохождении света через узкие щели или огибании препятствий. На экране, поставленном за ними, можно наблюдать чередующиеся светлые и темные круги, которых не должно быть согласно корпускулярной теории.

Защитники волновой гипотезы рассматривают свет как процесс распространения волн, подобный движению волн на поверхности жидкости. С помощью этой гипотезы они сумели объяснить не только все явления, которые объяснила корпускулярная гипотеза, но также и те, которые с трудом или совсем не поддавались объяснению с помощью прежней гипотезы (интерференция и дифракция). Именно поэтому в XIX в. волновая гипотеза света вытеснила из оптики корпускулярную гипотезу.

Световые волны, как и волны на поверхности жидкости, распространяются перпендикулярно колебательному процессу и, следовательно, относятся к поперечным волнам. В отличие от них звуковые волны называют продольными волнами, так как направление их распространения совпадает с направлением движения воздуха. По-


скольку световые волны, как и волны на поверхности жидкости, возникают в результате колебания по вертикали их частиц, то неизбежно возникает вопрос: какая среда служит источником световых колебаний? В качестве ответа на него была выдвинута гипотеза о существовании светового эфира, заполняющего все мировое пространство и обладающего свойствами упругости. В результате этого передача света ассоциировалась с колебаниями эфира. Однако никакими экспериментами существование такого эфира не было обнаружено, и поэтому в дальнейшем от него полностью отказались.

После открытия электромагнитных волн, скорость распространения которых равнялась скорости света, ученые пришли к выводу, что свет представляет собой особый вид электромагнитных волн. Он отличается от обычных электромагнитных волн крайне малой величиной длины волны, которая равна 4,7 10 -5 см для видимого и 10 -6 см для невидимого, ультрафиолетового света. Длинные электромагнитные волны, например в виде радиоволн, могут распространяться на тысячи километров.

Таким образом, первым важнейшим результатом электромагнитной концепции стал отказ от гипотезы существования светового эфира как особой среды для распространения света. Такую роль стало играть само пространство, в котором происходит распространение электромагнитных волн.

Второй результат заключается в объединении световых явлений с электромагнитными процессами, благодаря чему оптика стала частью теории электромагнетизма. Однако в начале XX в. было открыто явление фотоэлектрического эффекта, заключающееся в испускании электронов веществом под воздействием света. Электромагнитная теория света была не в состоянии объяснить независимость энергии фотоэффекта от интенсивности освещения. Еще в конце XIX в. русский физик А.Г. Столетов установил, что энергия фотоэффекта возрастает с частотой света, но не зависит от его интенсивности. Этот результат явно противоречил предсказаниям электромагнитной теории.

Чтобы объяснить фотоэффект, А. Эйнштейну пришлось отказаться от волновых представлений о свете и обратиться к квантовой его природе, т.е. в видоизмененной форме вновь возродить корпускулярную точку зрения на свет. Впервые о квантах заговорили в 1900 г., когда известный немецкий физик М. Планк доказал, что энергия излучается и поглощается не непрерывно, а отдельными порциями, или квантами. В 1905 г. Эйнштейн показал, что свет распространяется в виде потока световых квантов, которые были названы фотонами. Энергия фотонов зависит от их частоты, т.е. Е = hv , где h - постоянная Планка, v - частота.


Квантовый взгляд на природу света не мог полностью опровергнуть представлений о волновом его характере, о чем свидетельствовали явления интерференции и дифракции. Как можно было объединить в единой картине квантовые и волновые представления? Об этом мы узнаем позже, когда познакомимся с квантовой механикой и теорией элементарных частиц.

4.4. Поле и вещество

Введение понятия электромагнитного поля расширило научное представление о формах материи, изучаемых в физике. Классическая, ньютоновская физика имела дело только с одной-единственной формой физической материи - веществом, которое было построено из материальных частиц и представляло собой систему таких частиц, в качестве которых рассматривались либо материальные точки (механика), либо атомы (учение о теплоте).

Если главной характеристикой вещества является масса, так как именно она фигурирует в основном законе механики F = та, то в электродинамике основным является понятие энергии поля. Другими словами, при изучении движения в механике в первую очередь обращают внимание на перемещение тел, обладающих массой, а при исследовании электромагнитного поля - на распространение электромагнитных волн в пространстве с течением времени. Другим отличием вещества от поля является также характер передачи воздействий. В механике такое воздействие передается с помощью силы, причем оно может быть осуществлено в принципе на какое угодно расстояние, в то время как в электродинамике энергетическое воздействие поля передается от одной точки к другой.

Наконец, нельзя не отметить также тот немаловажный факт, что, после того как источник электромагнитных волн прекращает свое действие, возникшие электромагнитные волны продолжают распространяться в пространстве. Выходит, что электромагнитные волны могут существовать автономно, без непосредственной связи с источником энергии.

Исторически подход к изучению природы с точки зрения вещества и связанной с ним массы нашел отчетливое выражение в механистической картине мира, которая пыталась объяснить другие, немеханические явления с помощью понятий и принципов механики. В его основе лежит представление о дискретной природе вещества, которое в механике рассматривалось как система материальных час-


тиц, а в других науках - совокупность атомов или молекул. Таким образом, дискретность можно рассматривать как конечную делимость материи на отдельные, все уменьшающиеся части. Еще античные греки поняли, что такая делимость не может продолжаться бесконечно, ибо тогда исчезнет сама материя. Поэтому они выдвинули предположение, что последними неделимыми частицами материи являются атомы.

С дискретной точки зрения строение материи можно представить в виде такой структуры, которая предполагает возможность ее конечного деления на все уменьшающиеся отдельные части, начиная от молекул и атомов и кончая элементарными частицами и кварками.

С точки зрения непрерывности материя представляется в виде определенной целостности и единства. Наглядным образом такой непрерывности является любая сплошная среда, которая заполняет определенное пространство. Свойства такой среды, например жидкости, изменяются от одной точки к другой непрерывно, без перерыва постепенности и скачков. На примере электромагнитного поля мы убедились, что силовое воздействие такого поля передается от близлежащей предшествующей точки к последующей, т.е. непрерывно.

В классической теории существовало явное противопоставление дискретности и непрерывности, когда исключалось всякое их взаимодействие при изучении вещества и поля. В современной же физике, как мы убедимся в дальнейшем, именно взаимосвязь и взаимодействие дискретности и непрерывности, корпускулярных и волновых свойств материи при исследовании свойств и закономерностей движения ее мельчайших частиц служит основой адекватного описания изучаемых явлений и процессов. Таким микрочастицам материи присущ корпускулярно-волновой дуализм, т.е. они одновременно обладают как свойствами корпускул (вещества), так и волн (поля).

Подобное представление совершенно чуждо классической физике, в которой дискретный и корпускулярный подход применялся при изучении одних явлений, а непрерывный и полевой - при исследовании других. Более того, мы знаем теперь, что механистическая трактовка явлений электричества и магнетизма основывалась в конечном счете на дискретной и корпускулярной их интерпретации, когда они рассматривались как особые субстанции, т.е. когда отождествлялись с разновидностью вещества.

Более универсальный подход к единому объяснению всех физических явлений с точки зрения единой теории поля был выдвинут в качестве грандиозной программы создателем теории относительности А. Эйнштейном, но так и остался нереализованным. Основные его

идеи станут понятными после того, как мы познакомимся с теорией относительности.

Диалектическое взаимодействие дискретности и непрерывности находит свое яркое воплощение в современных квантовых теориях полей. Действительно, взаимодействие в квантовой теории электромагнитного поля происходит в результате взаимного обмена фотонами, квантами этого поля. То же самое можно сказать о гравитационном поле, где такое взаимодействие осуществляется с помощью гравитонов, гипотетических частиц такого поля. Частицы, или кванты, поля в каждой точке пространства создают поле сил, которое оказывает свое воздействие на другие частицы.

Само же поле в истории физики интерпретировалось по-разному. В первых представлениях об электромагнетизме поле рассматривалось чисто механически, а именно как натяжение силовых линий между зарядами, а в оптике как упругое колебание особой, все проникающей среды - мирового эфира. После отказа от такого допущения сначала в теории электромагнитного поля, а затем в теории относительности на роль своеобразного эфира в современной физике претендует, по-видимому, физический вакуум. В квантовой теории поля он рассматривается как низшее энергетическое состояние квантованных полей, в котором отсутствуют какие-либо реальные частицы. Однако возможность виртуальных процессов в вакууме приводит к определенным эффектам при взаимодействии его с реальными частицами. В квантовой теории поля понятие физического вакуума считается основным, поскольку его свойствами определяются свойства всех других состояний системы.

Таким образом, с развитием физики представления о веществе и поле в корне изменились. Прежнее их противопоставление в классической физике уступило место пониманию их взаимосвязи и взаимодействия в современной физике. С одной стороны, вещество рассматривается как определенная дискретная система взаимодействующих элементарных частиц. С другой стороны, поле как непрерывная целостность состоит из квантов поля, которые обмениваются друг с другом энергией и тем самым обеспечивают существование и движение самой системы.

Основные понятия и вопросы

Близкодействие Дальнодействие

Вакуум (физический) Дискретность

Вещество Дифракция

Волна Интерференция


Квант энергии Фотоэффект

Оптика Электромагнитная индукция

Радиоволны Электромагнитное поле

Свет Электромагнитные колебания

1. Как первоначально объясняли явления электричества и магнетизма?

2. Какие открытия стали основой для создания теории электромагнитного поля?

3. В каких случаях электрические заряды создают магнитное поле?

4. Что такое статическое электрическое поле?

5. В каком случае статическое поле может превратиться в динамическое поле и образовать магнитное поле?

6. Когда магнит создает электрическое поле?

7. Какая связь существует между электричеством и магнетизмом?

8. На какие открытия опирался Максвелл при создании своей теории электромагнитного поля?

9. Какие новые следствия были получены из теории Максвелла?

10. Почему оптические явления стали рассматриваться как электромагнитные?

11. Какой характер имеют электромагнитные волны?

12. Чем отличаются световые волны от других электромагнитных волн?

13. Как происходит передача энергии в электромагнитном поле?

14. Чем отличается поле от вещества?

Литература

Основная:

Философия науки. Современные философские проблемы областей научного

знания. М., 2005. Эйнштейн А., Инфельд Л. Эволюция физики // Эйнштейн А. Собр. научных

трудов: В 4 т. Т. 4. С. 401-452. 100 лет квантовой теории. История. Физика. Философия. М., 2002.

Дополнительная:

Фейнмановские лекции по физике. Вып. 3. Излучение. Волны. Кванты. М.,

1966. Гл. 28. Фейнмановские лекции по физике. Вып. 5. Электричество и магнетизм. М.,

1966. Гл. 1. Философия: энциклопедический словарь / Под ред. А.А. Ивина. М., 2004.



Физики в течение XIX века пытались объяснить электромагнитные явления в механической картины мира. Но эти попытки были провальными, так как электромагнитные явления слишком отличались от механических процессов. М. Фарадей и Дж. Максвелл внесли существенный вклад в формирование электромагнитной картины мира. Созданная Дж. Максвеллом теория электромагнитного поля стала причиной появление электромагнитной картины мира.

Максвелл разработал теорию в основе которой было явление, которое называлось явлением электромагнитной индукции. Фарадей проводил эксперименты при помощи магнитной стрелы, стремясь объяснить природу магнитных и электрических явлений. После проведенного эксперимента он пришел к выводу, что вращение магнитной стрелки зависит не от электрических зарядов, которые находятся в проводнике, а от особого состояния окружающей среды, которое появлялось рядом с магнитной стрелкой. Это означало, что ток взаимодействует с магнитной стрелкой с помощью окружающей проводник среды. Так было введено такое понятие поля как совокупность магнитных силовых линий, пересекающих пространство и индуцировать электрический ток. Это открытие дало Фарадею понять, что представления о материи являются континуальными, непрерывными, а не корпускулярными.

Теория электромагнитного поля Максвелла заключается в том, что при изменении магнитного поля не только в окружающих телах, но и в вакууме приводит к возникновению электрического поля, которое, способствует появлению магнитного поля. Так в физике возникла новая реальность - электромагнитное поле. В физикетеория электромагнитного поля Максвелла ознаменовала собой начало совершенно нового этапа. В соответствии с данной теорией мир это единая электродинамическая система, которая включает в себя электрически заряженные частицы, взаимодействующих посредством электромагнитного поля.

Проводя анализ состояния физики в период возникновения самых первых гипотез о строении атома можно увидеть, что постановка такой цели ближайшим образом была связана с разработкой электромагнитной картины мира. Согласно постулатам электромагнитной картины мира, все процессы природы и мира могут быть рассмотрены как взаимодействие вещества и эфира. Предполагалось, что все силы природы можно унифицировать, сводя абсолютно разные типы сил к изменениям состояния самого эфира (“Один эфир для света, теплоты и электричества”, - в конце XIX века писал Кельвин). Можно считать, что и ньютоновский закон всемирного тяготения сводился к передаче сил со временем с конечной скоростью в эфире. Взаимодействие атомов вещества и эфира рассматривалось как метод (источник) возникновения зарядов.

В первую очередь, согласно программе Максвелла и его последователей (например, Герца, Ленарда), можно предположить, что заряды представляются как некие процессы возмущения эфира (на основании ключевой идеи максвелловской теории электромагнитного поля о тождественности тока проводимости и тока смещения, что и позволило представить плотности зарядов-токов в форме потока электромагнитного поля). Только вот под влиянием идей атомистики в физике множество раз высказывались гипотезы о возможности перенести принцип атомизма и на заряды. Такие идеи нашли теоретическое и эмпирическое подтверждения после первого открытия электронов и разработки электродинамики Лоренца, которая основывалась на представлении о зарядах-токах как о некой системе электронов, взаимодействующих с электромагнитным полем. После в картину мира уже точно вошло новое представление о зарядах. Они уже рассматривались в качестве особых частиц - электронов (атомов электричества), взаимодействие их с эфиром (электромагнитным полем) представлялось как глубокое основание всех физических процессов. Тогда в физической картине мира кроме “эфира” и “атомов вещества” появился совершенно новый элемент - так называемые “атомы электричества”, и тогда же возникла проблема их взаимоотношения с атомами “обычного” вещества. Большой интерес к вопросам о строении вещества, который возник в конце XIX - начале XX века в физике, во многом был продиктован как раз этой проблемой. Рассуждая на эту тему, ученые, в первую очередь задали вопрос: не входят ли электроны в состав атома? Хотя сама формулировка данного вопроса была достаточно смелым шагом, так как она приводила к совершенно новым представлениям в картине мира (нужно было согласится со сложным строением атомов вещества). Именно поэтому конкретизация вопроса соотношения электронов и атомов была связана с выходом в сферу философского анализа, что происходит при радикальных скачках в картине мира (приведем пример, Дж. Дж. Томсон, он был одним из инициаторов постановки задачи о связи атомов и электронов вещества, он искал опору в идеях атомистики Босковича, чтобы доказать саму необходимость перехода в картине мира “атомов вещества” к “атомам электричества”). Но так или иначе можно сказать, что проблема соотношения атомов и электронов и ее анализ под углом зрения сложности атома была рассмотрена при помощи развития физической картины мира.

С эволюцией физики, по мере возникновения новых данных, полученных с помощью эксперимента, и теоретических представлений (особенно после создания теории радиоактивного распада и его открытия) конструирование разных моделей строения атома стало обычным явлением у физиков. Однако само построение данных моделей началось немного раньше, под влиянием проблемы электрона, который был введен в качестве особого элемента в картину физической реальности.

Таким образом, мы можем сделать вывод, что к построению гипотетических схем структуры атома импульс был создан электромагнитной картиной мира, включившей в состав теоретического и эмпирического материала физики под влиянием предшествующего развития и при участии философских идей совершенно новые элементы .

Механическую картину мира во многом изменили новые физические и философские взгляды на материю, силы, пространство и время. Эти изменения не были революционными, так как они и осуществились в пределах классической науки. При помощи соединения новых идей и старых механистических представлений о природе электромагнитная картина мира является промежуточной. Существенно изменились лишь представления о материи: корпускулярные идеи заменились континуальными (полевыми). Материя уже не являлась совокупностью неделимых атомов, которые переставали быть конечным пределом делимости материи. Пределом делимости принималось абсолютно непрерывное бесконечное поле с волновыми движениями в нем и электрическими зарядами. Согласно электромагнитной картине мира, материя может существовать лишь в двух видах - поле и вещество. Превращения друг в друга невозможно в электромагнитной картине мира. Поле обладает приоритетом относительно вещества, а значит, главным свойством материи является непрерывность в противовес дискретности. Поперечные электромагнитные волны являются способом распространения электромагнитного поля, которые захватывают постоянно новые области пространства. Законы Ньютона не в состоянии описать заполнение пространства электромагнитным полем, потому что механика не воспринимает этот механизм. В механике одно материальное явление не может зависеть от изменения другого, и в совокупности они не могут создавать единой сущности.

Изменения коснулись и понятия движения. Движение могло рассматриваться не только как обычное механическое перемещение, но и как распределение колебаний в поле. Соответственно законы электродинамики Максвелла потеснили законы механики Ньютона.

Решение такой проблемы физического взаимодействия должно было удовлетворять новой физической картине мира. Фарадеевским принципом близкого действия потеснил ньютоновский принцип дальнодействия, что привело к пониманию взаимодействия как непрерывного от точки к точке и с конечной скоростью.

Поля не имеют точно очерченных границ и тем самым перекрывают друг друга. Этот факт означал, что концепция абсолютного времени и абсолютного пространства Ньютона не соответствовала новым полевым представлениям о материи.

В первую очередь в самом понимании времени и пространства электромагнитная картина мира происходила из убеждения, что абсолютное пустое пространство заполнено мировым эфиром. С неподвижным эфиром физики пытались согласовать абсолютную систему отсчета. При этом для понимания большинства материальных явлений эфиру приходилось давать необычные свойства, иногда и противоречащие друг другу. Однако само создание специальной теории относительности вынудило физиков отказаться от идеи эфира, так как эта теория исходила из относительности массы, времени и длины, т.е. из зависимости их от системы отсчета. При рассмотрении электромагнитной картины мира материя, время и пространство могут существовать только вместе, и полностью зависят друг от друга. При этом время и пространство являются свойствами материальных тел.

Характерные свойства электромагнитной картины мира:

1. В пределах электромагнитной картины мира сложилась непрерывная (континуальная), полевая модель реальности. А сама материя рассматривалась как одно непрерывное поле с силовыми точечными центрами - волновыми движениями в нем и электрическими зарядами. Мир рассматривался как электродинамическая система, которая была построена из электрически заряженных частиц, которые взаимодействовали посредством электромагнитного поля.

2. Концепция Ньютона заменяется фарадеевским принципом. Фарадей утверждал, что каждые взаимодействия передаются полем от одной точки к другой, непрерывно и с конечной скоростью.

3. Кинетическая теория газов или статистическая механика появившаяся в середине XIX века, была основана на теории вероятности. Вероятность, случайность с этого промежутка времени нашли свое место в физике и были указаны в форме статистических законов. Статистический закон – это такой закон, который управляет поведением огромных совокупностей и в отношении отдельного объекта, он позволяет делать лишь выводы на основе вероятности о его поведении. Этот закон отражает диалектическую связь случайности и необходимости. И не исключает случайность, а рассматривает ее как форму проявления необходимости.

4. Игнорирование атомистической, дискретной природы вещества привело электродинамику Максвелла к целому ряду несоответствий, которые не возникают в созданной Лоренцом электронной теории или микроскопической электродинамики. Данная теория восстанавливает в правах электрические дискретные заряды и сохраняет поле как объективную реальность.

Электромагнитная картина мира может объяснить достаточно большой круг физических явлений, которые в той или иной мере не понятны с точки зрения предыдущей механической картины мира. Однако дальнейшее ее развитие показало ее ограниченность. Одна из самых главных проблем состояла в том, что континуальное понимание материи не согласовывалось с фактами, основанными на проведенных опытах, которые бы подтверждали дискретность ее свойств - действия, заряда, излучения. Оставалась еще нерешенной задача о соотношении поля и заряда, здесь не удавалось дать объяснение устойчивости атомов и их спектров, излучение абсолютно черного тела. Все это приводило к тому, что об относительном характере электромагнитной картины мира и необходимости ее замены новой физической картиной. Поэтому на замену ей пришла абсолютно новая квантово-релятивистская картина мира, которая объясняла дискретность механической картины мира и непрерывность электромагнитной картины мира.

Диалектика природы и естествознания Константинов Федор Васильевич

3. Электромагнитная картина мира

В процессе длительных размышлений о сущности электрических и магнитных явлений М. Фарадей пришел к мысли о необходимости замены корпускулярных представлений о материи континуальными (от лат, continuum - непрерывность). Он писал: «Я чувствую большое затруднение в представлении атомов материи с промежуточным пространством, не занятым атомами…» Он сделал вывод о том, что электромагнитное поле сплошь непрерывно, заряды в нем являются точечными силовыми центрами. Тем самым отпадал вопрос о построении механической модели эфира, о непримиримости механических представлений об эфире с реальными опытными данными о свойствах света, электричества и магнетизма. Основная трудность в объяснении света с помощью предполагаемого эфира состояла в следующем: если эфир - сплошная среда, то он не должен препятствовать движению в нем тел и, следовательно, должен быть подобен очень легкому газу. В опытах же со светом были установлены два фундаментальных факта: во-первых, световые и электромагнитные колебания являются не продольными, а поперечными и, во-вторых, скорость распространения этих колебаний очень велика - порядка 3 х 10 5 км/сек. В механике же было показано, что поперечные колебания возможны лишь в твердых телах, причем скорость их зависит от плотности этих тел.

Для такой большой скорости, как скорость света, плотность эфира во много раз должна превосходить плотность стали. Но тогда непонятно, как же такой сверхплотный эфир не препятствует движению в нем тел? На протяжении всего XIX и частично XX в. продолжались упорные попытки разрешить эти трудности в представлениях об эфире, хотя фактически еще М. Фарадей в 1844 г. нашел правильное решение проблемы. Чтобы принять это решение, надо было совершить революцию в представлениях о материи и движении.

Д. К. Максвелл был одним из первых, кто должным образом оценил значение взглядов Фарадея на природу. При этом он подчеркивал, что Фарадей выдвинул новые философские взгляды на материю, пространство, время и силы. Согласно взглядам Фарадея, электромагнитное поле - тонкая невещественная материя, первичная по отношению к атомам и телам; движение - распространение колебаний в поле - первично по отношению к перемещению тел. Пустого пространства нет, так как поле является абсолютно непрерывной материей; время неразрывно связано с процессами, происходящими в поле; не соответствует действительности и ньютоновский принцип дальнодействия: любые взаимодействия передаются полем от точки к точке непрерывно и с конечной скоростью (фарадеевский принцип близкодействия).

Руководствуясь этими представлениями о физической реальности, Дж. Максвелл в 1867 г. построил теорию электромагнетизма. Вследствие своего революционного характера она долгое время казалась трудной и непонятной для тех физиков, в умах которых продолжала господствовать механическая картина природы. Трудности усвоения теории электромагнетизма усугублялись еще и тем, что она выражалась при помощи более сложных, чем в механике, математических уравнений. Но они удивительно хорошо объясняли все известные факты.

Тем не менее физикам, не владевшим диалектикой, казалось, что если эфир отброшен, то отброшена и материя; признать же поле за материю они не могли. В физике начались «шатания мысли». Как отмечал В. И. Ленин:

«„Материя исчезает“, остаются одни уравнения… получается старая кантианская идея: разум предписывает законы природе». «Такова первая причина „физического“ идеализма. Реакционные поползновения порождаются самим прогрессом науки», - делает вывод В. И. Ленин.

Объективный ход развития физики неизбежно привел к ломке старых фундаментальных понятий и принципов, к формированию новых. Непримиримое противоречие между механической картиной мира и опытными данными разрешилось крушением первой. Вместо нее возникло новое миропонимание - электромагнитная картина мира, и начался новый период в развитии физики.

Ученые занялись математической разработкой теории Дж. Максвелла, как это имело место и после создания механики Ньютона. Вернее сказать, с появлением электромагнитной картины мира начался этап интенсивного эволюционного развития физики на новой основе. Взгляды М. Фарадея и Дж. Максвелла произвели подлинную революцию в представлениях о природе. В качестве исходной материи здесь оказалась не совокупность неделимых атомов, перемещающихся в пустоте, а единое абсолютно непрерывное бесконечное поле с силовыми точечными центрами - электрическими зарядами и с волновыми движениями в нем. Основными законами мироздания оказались не законы механики, а законы электродинамики. В связи с этим менялись и методы научного исследования.

Теория электромагнетизма Максвелла объяснила большой круг явлений, не понятых с точки зрения прежней механической картины мира. Кроме того, она глубже вскрывала материальное единство мира, поскольку электричество и магнетизм объяснялись на основе одних и тех же законов. Последние послужили базой для электромагнитной теории света. При этом была построена единая шкала электромагнитных колебаний от самых длинных радиоволн до коротких рентгеновских и гамма-излучений. На первых порах успешно разрабатывалась и электронная теория строения вещества. Ученые пытались и механические движения объяснить с помощью электродинамики. Строились доказательства электромагнитного происхождения массы, была найдена формула зависимости массы от скорости (М. Абрагам).

Однако на этом пути вскоре стали возникать непреодолимые трудности. Так, согласно электромагнитной картине мира, заряд считался точечным центром, а факты свидетельствовали о конечной протяженности частицы-заряда. Поэтому уже в электронной теории Г. А. Лоренца частица-заряд вопреки новой картине мира рассматривалась в виде твердого заряженного шарика, обладающего массой. Однако это допущение не снимало трудностей. Полученная опытным путем формула зависимости массы от скорости не совпадала с рассчитанной на основе теории. Вскоре появились и другие расхождения теории и опыта. Непонятным оказался результат опытов, проведенных в 1881–1887 гг. Майкельсоном. В этом опыте он пытался обнаружить движение тела по инерции при помощи приборов, находящихся на этом же теле. По теории Максвелла, такое движение можно обнаружить, но опыт не подтверждал этого.

В конце XIX - начале XX в. исследования показали, что взгляды Максвелла на физическую реальность были внутренне противоречивы. Приняв новые взгляды на материю и движение, заменив механические законы природы на электродинамические, он сохранил ньютоновские представления об абсолютности пространства и времени. Но в самих уравнениях электродинамики неявно содержалось предположение об относительности пространства и времени, чего сам Максвелл, как и другие физики того времени, не заметил.

Электродинамический этап развития физики делится на два периода: от Фарадея и Максвелла до Эйнштейна и после Эйнштейна по настоящее время. В первый период в результате некоторой недостроенности новой картины мира (сохранение ньютоновских представлений о пространстве и времени) в построении электродинамических теорий имелись внутренние противоречия, о которых мы говорили ранее. Однако этому не придавалось принципиального значения. Более того, выводы теории Максвелла были абсолютизированы, так что даже такой крупный физик, как Г. Кирхгоф, восклицал: «Разве осталось что-либо еще открывать?»

Однако к концу XIX в. все больше накапливалось необъяснимых несоответствий теории и опыта. Последние следует разделить на две группы. Одни были обусловлены указанной выше недостроенностью электромагнитной картины мира. Другие вообще не согласовывались с континуальными представлениями о материи, т. е. выходили за пределы этой картины. К последним следует отнести трудности в объяснении фотоэффекта, открытого в 1887 г., линейчатых спектров атомов, но особенно большие трудности возникали при попытках построить теорию теплового излучения. Эмпирические законы, установленные в этой области, не согласовывались с новой картиной мира.

Последовательное применение теории Максвелла к другим движущимся средам приводило к выводам о неабсолютности пространства и времени. Однако убежденность в их абсолютности была так велика, что ученые удивлялись своим выводам, называли их странными и фактически отказывались от них. Работами этих ученых, прежде всего Г. Лоренца и А. Пуанкаре, завершается доэйнштейновский период развития электродинамической физики.

Однако концепция абсолютности пространства и времени И. Ньютона, базировавшаяся на их независимости от характера и природы движущихся тел, не была отброшена сразу. Открытия А. Эйнштейна, теоретически обосновавшие тезис единства материи, движения, пространства и времени, победили тогда, когда была доказана диалектическая связь пространства и времени как форм движения материи с природой движущихся систем. Принимая законы электродинамики в качестве основных законов физической реальности, Эйнштейн ввел в электромагнитную картину мира идею относительности пространства и времени и тем самым устранил противоречие между пониманием материи как определенного вида поля и ньютоновскими представлениями о пространстве и времени. Взгляды Эйнштейна опирались на более правильное и глубокое философское понимание сущности электродинамической физики, что дало ему возможность устранить из электромагнитной картины мира ньютоновское понимание пространства и времени, заменив их такими, которые соответствовали полевым континуальным представлениям о материи и движении. Тем самым новая картина мира была создана в виде системы согласованных между собой понятий, принципов и гипотез.

С появлением теории относительности Эйнштейна (1905 г.) начинается второй период в развитии физики. Введение в электромагнитную картину мира релятивистских представлений о пространстве и времени открыло новые возможности для ее развития. Прежде всего были разработаны новые специальные теории: релятивистская «динамическая» механика, релятивистская «феноменологическая» термодинамика, релятивистская статистическая механика. Что касается электродинамики Максвелла, то она была дополнена электродинамикой движущихся тел.

Первой качественно новой теорией этого периода стала общая теория относительности (1916 г.), которая фактически является теорией тяготения. Чтобы ее построить, в электромагнитную картину мира А. Эйнштейном было введено понятие о кривизне пространства-времени, что расширяло конкретные представления о пространстве и времени. Как известно, по Ньютону, тяготение определялось как особая способность тел мгновенно притягивать друг друга при любых расстояниях между ними. Такое понимание тяготения является поверхностным, однако оно просуществовало в физике более 200 лет. Эйнштейн впервые дал глубокое объяснение природы тяготения. При этом большое философское значение имеет введенная Эйнштейном зависимость кривизны пространства-времени от распределения масс, т. е. от таких видов материи, как вещество и поле. Тем самым получило подтверждение известное положение материалистической диалектики о взаимосвязи пространства, времени и движущейся материи.

К тому же в результате новых экспериментальных открытий в области строения вещества в конце XIX - начале XX в. все больше обнаруживалось непримиримых противоречий между электромагнитной картиной мира и опытными фактами. В 1897 г. было открыто явление радиоактивности и было установлено, что оно связано с превращением одних химических элементов в другие, которое сопровождается испусканием?-лучей (ионов гелия) и?-лучей (электронов). Изучение этих явлений создало основу для построения эмпирических моделей атома. Такого рода модели, построенные на основе опытных данных, противоречили электромагнитной картине мира.

В 1900 г. М. Планк в процессе многочисленных попыток построить теорию излучения был вынужден высказать предположение о прерывности (квантовом характере) процессов излучения. Сам Планк, в то время приверженец электромагнитной картины мира, отмечал, что он испытывает отвращение к такой странной гипотезе, разрушающей стройное здание электродинамики Максвелла. Однако гипотеза Планка о квантах излучения оказалась очень плодотворной.

Противоречия между электромагнитной картиной мира и новыми открытиями в области строения атома и законов излучения становились все более непримиримыми. Назревала новая революция в физике, связанная с заменой существующей картины мира квантово-полевой.

Из книги Хрестоматия по философии [Часть 2] автора Радугин А. А.

Тема 11. Человек во Вселенной. Философская, религиозная и научная картина мира 11.1. Концепция бытия – фундамент ф илософской картины мира Основная задача каждой философии заключается в решении проблемы наличного бытия мира. Решением этой проблемы занимались все философы,

Из книги Философия науки и техники автора Стёпин Вячеслав Семенович

Научная картина мира Второй блок оснований науки составляет научная картина мира. В развитии современных научных дисциплин особую роль играют обобщённые схемы – образы предмета исследования, посредством которых фиксируются основные системные характеристики

Из книги Прикладная философия автора Герасимов Георгий Михайлович

Картина мира Сформулирую в общих чертах существенные с моей точки зрения элементы картины мира, предлагаемой этой философской системой.Существует бесконечная, вездесущая, неизменная во времени нематериальная субстанция, в которой содержится полная информация о всем

Из книги Эволюционная теория познания [врождённые структуры познания в контексте биологии, психологии, лингвистики, философии и теории науки] автора Фоллмер Герхард

G ЯЗЫК И КАРТИНА МИРА Язык является домашним изобретением и мы не должны ожидать, что он далеко выходит за пределы повседневного опыта.(Wilkinson,1963,127)Язык, без сомнения, является одним из важнейших признаков человека. Он является основопологающим средством коммуникации,

Из книги Материалы сайта Savetibet.ru (без фотографий) автора Гьяцо Тензин

Из книги Материалы сайта Savetibet.ru автора Гьяцо Тензин

Ясная картина мира беседа c российскими журналистами Дхарамсала, Индия 7 октября 2005 В мае 2005 года, в преддверии 70-летнего юбилея Его Святейшества Далай Ламы, группа российских журналистов, представляющих такие издания, как журнал «Итоги», газеты «Новые Известия» и

Из книги Основы философии автора Бабаев Юрий

Религиозная картина мира Если рассматривать космологическую часть какой-либо религии конкретно, то мы обнаружим определенные различия в частностях понимания мироздания, но принципиальные положения в объяснении исходных положений мироздания повторяются. Обратимся к

Из книги Эниология вечности, или Новый «Дао дэ цзин» автора Бугаев Александр Филиппович

Философская картина мира Философия с самого своего зарождения, в силу объективных потребностей человека, всегда стремилась раскрыть пути к познанию всеобщего, основополагающего, лишь в качестве иллюстрации используя порой признаки составляющих мир элементов бытия.

Из книги 3. Диалектика природы и естествознания автора

Глава 1. Онтология. Картина Мира Вся воспринимаемая человеком информация (ученые насчитывают уже 55 параметров) записывается на его дорожку памяти как на киноленту, и сохраняется до конца жизни. Но пробивается наверх, в аналитический ум, и выше - в сознание - лишь малая ее

Из книги Диалектика природы и естествознания автора Константинов Федор Васильевич

Из книги Инстинкт и социальное поведение автора Фет Абрам Ильич

2. Механическая картина мира Полноценной наукой физика стала в XVII в., когда появилась общественная необходимость в более глубоком изучении природы. До этого понимание природы основывалось на обыденных знаниях и натурфилософии. Дальнейшее развитие общественного

Из книги Философское ориентирование в мире автора Ясперс Карл Теодор

3. Электромагнитная картина мира В процессе длительных размышлений о сущности электрических и магнитных явлений М. Фарадей пришел к мысли о необходимости замены корпускулярных представлений о материи континуальными (от лат, continuum - непрерывность). Он писал: «Я чувствую

Из книги История мировой культуры автора Горелов Анатолий Алексеевич

Из книги Генри Торо автора Покровский Никита Евгеньевич

Мироздание и картина мира Мыслить мироздание - захватывающая мысль. Вместо существования, в котором я есмь, я схватываю в ней единое, которое есть все. Но это - только мысль. Я, как существо, охватывающее (fa?t) мысль о продвижении (Fortschreiten) за пределы всякого особенного

Из книги автора

Научная картина мира В процессе духовной эволюции человечество не получило обещанного счастья, но получило информацию, за что тоже должна быть благодарна культуре. Какова она в наиболее проверенной научной форме? Другими словами, какова современная научная картина

Из книги автора

2. Романтическая картина мира Важнейшую цель своего художественно-философского творчества романтики видели в максимально точном выражении становления и развития жизни во всей ее динамике. Органическому строению мира романтики искали эквиваленты в «органических»

Основной вклад в становление электромагнитной картины мира (ЭКМ) внесли английские ученые: М. Фарадей и Дж. Максвелл.

Экспериментальную ЭКМ создал выдающийся английский физик-самоучка Майкл Фарадей (1791–1867) в 30-е годы XIX в. Для описания электромагнитных явлений он впервые ввел понятие поля. Электромагнитное поле, как особый вид материи, свойства и закономерности которого изучаются электродинамикой.

Экспериментальная ЭКМ , может быть охарактеризована следующими открытиями Фарадея:

1831 г. – открытие закона электромагнитной индукции;

1834 г.– открытие законов электролиза;

1837 г. – обнаружение поляризации диэлектриков;

1843 г. – экспериментальное доказательство закона сохранения электрического заряда;

1845 г. – открытие диамагнетизма;

1846 г. – выдвижение идеи об электромагнитной природе света;

1847г. – открытие парамагнетизма.

В 60-х годах XIX в. английский физик Максвелл развил теорию Фарадея об электромагнитном поле и создал теорию электромагнитного поля– по сути, теоретическую электромагнитную картину мира.

Это была первая теория поля. Она касается только электрического и магнитного полей и весьма успешно объясняет многие электромагнитные явления некоторые основные идеи, лежащие в основе данной теории.

Согласно Максвеллу, если всякое переменное магнитное поле возбуждает в пространстве вихревое электрическое поле, то должно существовать обратное явление: всякое изменение электрического поля должно вызывать появление в окружающем пространстве вихревого магнитного поля. Для установления количественных соотношений между изменяющимся электрическим полем и вызываемым им магнитным полем Максвелл ввел в рассмотрение так называемый ток смещения, обладающий способностью создавать в окружающем пространстве магнитное поле. Ток смещения в вакууме не связан с движением зарядов, а обусловливается только изменением электрического поля во времени и вместе с тем возбуждает магнитное поле – в этом заключается принципиально новое утверждение Максвелла.

Итак, теоретическая ЭКМ Максвелла включает систему, состоящую из 20 уравнений:

Три уравнения магнитной силы;

Три уравнения электрических токов;

Три уравнения ЭДС;

Три уравнения электрической упругости;

Три уравнения электрического сопротивления;

Три уравнения полных токов;

Уравнение свободного электричества;

Уравнение непрерывности.

В подтверждении справедливости полевых представлений Фарадея-Максвелла решающую роль сыграли опыты немецкого физика Г. Герца (1857–1894), в которых были получены и исследованы электромагнитные волны, существование которых предсказал Максвелл.

Из уравнений Максвелла следует, что источниками электрического поля могут быть либо электрические заряды, либо изменяющиеся во времени магнитные поля, а магнитные поля могут возбуждаться либо движущимися электрическими зарядами (электрическими токами), либо переменными электрическими полями. Уравнения Максвелла – наиболее общие уравнения для электрических и магнитных полей в покоящихся средах. В учении об электромагнетизме они играют такую же роль, как законы Ньютона в механике. Из уравнений Максвелла следует, что переменное магнитное поле всегда связано с порождаемым им электрическим полем, а переменное электрическое поле связано с порождаемым им магнитным, т.е. электрическое и магнитное поля неразрывно связаны друг с другом – они образуют единое электромагнитное поле.

К электромагнитному полю применим только принцип относительности Эйнштейна, так как факт распространения электромагнитных волн в вакууме во всех системах отсчета с одинаковой скоростью не совместим с принципом относительности Галилея.

После создания Максвеллом электромагнитной теории поля, во второй половине XIX в., началось широкое практическое использование электромагнитных явлений. Изобретение радио русским физиком и электромехаником А.С. Поповым (1859–1906) – одно из первых важнейших применений принципов новой, электромагнитной теории. Если бы на мгновение прекратилось действие электромагнитных сил, то сразу исчезла бы и жизнь. Строение атомной оболочки, сцепление атомов в молекулы (химическая связь) и образование из вещества тел различной формы определяются исключительно электромагнитным взаимодействием.

Принципы дальнодействия и близкодействия . Долгое время считалось, что взаимодействие между телами может осуществляться непосредственно через пустое пространство, которое не принимает участия в передаче взаимодействия, и передача взаимодействия происходит мгновенно. Такое предположение составляет сущность принципа дальнодействия . Сам Ньютон признавал невероятность и даже невозможность подобного рода взаимодействий тел.

Основоположник принципа дальнодействия – французский математик, физик и философ Рене Декарт. Экспериментальные исследования электромагнитных явлений показали несоответствие принципа дальнодействия физическому опыту. Кроме того, она находится в противоречии с постулатом специальной теории относительности, в соответствии с которым скорость передачи взаимодействий тел ограничена и не должна превышать скорость света в вакууме.

Было доказано, что взаимодействие электрически заряженных тел осуществляется не мгновенно и перемещение одной заряженной частицы приводит к изменению сил, действующих на другие частицы, не в тот же момент, а лишь спустя конечное время. Каждая электрически заряженная частица создает электромагнитное поле, действующее на другие заряженные частицы, т.е. взаимодействие передается через «посредника» – электромагнитное поле. Скорость распространения электромагнитного поля равна скорости света в пустоте – примерно 300 000 км/с. Это и составляет сущность принципа близкодействия , который распространяется не только на электромагнитное, но и на другие виды взаимодействий. Согласно этому принципу взаимодействие между телами осуществляется посредством тех или иных полей (например, тяготение – посредством гравитационного поля), непрерывно распределенных в пространстве.

Дискретность и непрерывность материи. В философском плане разделение мира на тела и частицы, с одной стороны, и сплошную среду, поле и пустое пространство – с другой, соответствует выделению двух крайних свойств мира – его дискретности и непрерывности.

Дискретность (или прерывность) означает – «зернистость», конечную делимость пространственно-временного строения и состояния предмета или объекта, его свойств и форм движения (скачки), тогда как непрерывность выражает единство, целостность и неделимость объекта, сам факт его устойчивого существования. Для непрерывного нет границ делимого.

Только с развитием понятия «поля», позволило понять диалектическое единство – в современной квантовой теории это единство противоположностей дискретного и непрерывного нашло более глубокое физико-математическое обоснование в концепции корпускулярно-волнового дуализма .

Основные понятия ЭКМ: к онтинуальность материи, материальность физического поля; физическая относительность пространства и времени; непрерывность причинно-следственных связей; масса – мера инертности, тяготения и полной энергии тела; инвариантность законов физики и т.д.

Основные принципы ЭКМ : относительность Эйнштейна, постоянство скорости света, эквивалентность инерции и тяготения; соответствие между механикой и электродинамикой, причинность и др.